The following sum
\frac{1}{1+\frac{3}{n}} \cdot \frac{3}{n} + \frac{1}{1+\frac{6}{n}} \cdot \frac{3}{n}
+ \frac{1}{1+\frac{9}{n}} \cdot \frac{3}{n} + \ldots + \frac{1}{1+\frac{3 n}{n}} \cdot
\frac{3}{n}

is a right Riemann sum for a certain definite integral\int_1^b f(x)\, dx

using a partition of the interval[1,b] into n subintervals of equal length.

Then the upper limit of integration must be:b =

and the integrand must be the functionf(x) =

is a right Riemann sum for a certain definite integral

using a partition of the interval

Then the upper limit of integration must be:

and the integrand must be the function

You can earn partial credit on this problem.