Choose from these sentences:

- Wrong 5
- Therefore,
\displaystyle{\lim_{x \rightarrow 7} 7x+12 = 61}. - Choose
\delta>0 so that\delta<\frac{\epsilon}{7} . - Ask the teacher for extra credit.
|7x+12-61| \\ = 7 |x - 7| < 7 \frac{\epsilon}{7} = \epsilon - Suppose
\delta>0 - Assume
|x-7|<\delta - Wrong 4
- Let
L \in \mathbb{R} - Suppose
\epsilon>0

Your Proof:

Choose from these sentences:

- Wrong 5
- Therefore,
\displaystyle{\lim_{x \rightarrow 7} 7x+12 = 61}. - Choose
\delta>0 so that\delta<\frac{\epsilon}{7} . - Ask the teacher for extra credit.
|7x+12-61| \\ = 7 |x - 7| < 7 \frac{\epsilon}{7} = \epsilon - Suppose
\delta>0 - Assume
|x-7|<\delta - Wrong 4
- Let
L \in \mathbb{R} - Suppose
\epsilon>0

Your Proof: